
PyInputPlus Documentation

Al Sweigart

Sep 01, 2021





Contents

1 Installation 3

2 Quickstart 5

3 Common input*() Parameters 7

4 API Reference 9

i



ii



PyInputPlus Documentation

PyInputPlus is a Python 3 and 2 module to provide input()- and raw_input()-like functions with additional
validation features. PyInputPlus was created and is maintained by Al Sweigart.

Contents 1



PyInputPlus Documentation

2 Contents



CHAPTER 1

Installation

PyInputPlus can be installed from PyPI using pip:

pip install pyinputplus

On macOS and Linux, installing PyInputPlus for Python 3 is done with pip3:

pip3 install pyinputplus

If you run into permissions errors, try installing with the –user option:

pip install --user pyinputplus

The PySimpleValidate and stdiomask modules will also be installed as a part of PyInputPlus’s installation.

3



PyInputPlus Documentation

4 Chapter 1. Installation



CHAPTER 2

Quickstart

PyInputPlus will keep asking the user for text until they enter valid input. It’s recommended to import PyInputPlus
with the shorter name pyip.

>>> import pyinputplus as pyip

All of PyInputPlus’s functions begin with the input, such as inputStr() or inputDate(). Collectively, they
are referred to in this documentation as the input*() functions.

For example, you can ask the user for an integer with inputInt(), and the return value will be an integer instead
of the string that input() would normally return:

>>> input()
42
'42'
>>> response = pyip.inputInt() # keep asking until an int is entered
forty two
'forty two' is not an integer.
42
>>> response
42

You could specify a prompt, along with any restrictions you’d like to impose:

>>> response = pyip.inputInt('Enter your age: ', min=1)
Enter your age: 0
Number must be at minimum 1.
Enter your age: 2
>>> response
2

There are several functions for different common types of data:

>>> response = pyip.inputEmail()
alinventwithpython.com

(continues on next page)

5



PyInputPlus Documentation

(continued from previous page)

'alinventwithpython.com' is not a valid email address.
al@inventwithpython.com
>>> response
'al@inventwithpython.com'

You could also present a small menu of options to the user:

>>> response = pyip.inputMenu(['cat', 'dog', 'moose'])
Please select one of the following:

* cat

* dog

* moose
cat
>>> response
'cat'
>>> response = pyip.inputMenu(['cat', 'dog', 'moose'], numbered=True)
Please select one of the following:
1. cat
2. dog
3. moose
1
>>> response
'cat'

See the list of functions to get an idea of the kinds of information you can get from the user.

6 Chapter 2. Quickstart



CHAPTER 3

Common input*() Parameters

The following parameters are available for all of the input*() functions. You can see this documentation by calling
help(pyip.parameters):

>>> import pyinputplus as pyip
>>> help(pyip.parameters)
Help on function parameters in module pyinputplus:

parameters()
Common parameters for all ``input*()`` functions in PyInputPlus:

* ``prompt`` (str): The text to display before each prompt for user input.
→˓Identical to the prompt argument for Python's ``raw_input()`` and ``input()``
→˓functions.

* ``default`` (str, None): A default value to use should the user time out or
→˓exceed the number of tries to enter valid input.

* ``blank`` (bool): If ``True``, a blank string will be accepted. Defaults to
→˓``False``.

* ``timeout`` (int, float): The number of seconds since the first prompt for
→˓input after which a ``TimeoutException`` is raised the next time the user enters
→˓input.

* ``limit`` (int): The number of tries the user has to enter valid input before
→˓the default value is returned.

* ``strip`` (bool, str, None): If ``None``, whitespace is stripped from value. If
→˓a str, the characters in it are stripped from value. If ``False``, nothing is
→˓stripped.

* ``allowlistRegexes`` (Sequence, None): A sequence of regex str that will
→˓explicitly pass validation.

* ``blocklistRegexes`` (Sequence, None): A sequence of regex str or ``(regex_str,
→˓error_msg_str)`` tuples that, if matched, will explicitly fail validation.

* ``applyFunc`` (Callable, None): An optional function that is passed the user's
→˓input, and returns the new value to use as the input.

* ``postValidateApplyFunc`` (Callable, None): An optional function that is passed
→˓the user's input after it has passed validation, and returns a transformed version
→˓for the ``input*()`` function to return.

7



PyInputPlus Documentation

8 Chapter 3. Common input*() Parameters



CHAPTER 4

API Reference

9


	Installation
	Quickstart
	Common input*() Parameters
	API Reference

